

Cybersecurity threat elicitation under human-artificial intelligence sources of risk

Spoke 06

Giampaolo Bella, Mario Raciti, Simone Di Mauro

Third review meeting Second Software and Platform Security Workshop 26-28 June 2025

SERICS

Introduction

Threat modelling must map system safeguards to complex, *multi-domain regulations* to ensure **legal compliance**

Manual extraction of requirements from lengthy *legislative texts* is **slow and error-prone**

UniCT's Role (SCAI WP1: T1.2 - Innovative techniques for evaluating cyber risk)

Definition of a **cyber-risk assessment methodology** for *heterogeneous* ICT infrastructures, including **AI-** and **human-derived threats**

Goal i: Methodology definition (D4)

Goal ii: Vertical application (D5)

D4 at a Glance

Objective: Automated, *HAI-powered* threat elicitation from **regulatory texts**

Challenges:

Volume & complexity of **multi-domain** regulations (AI Act, NIS 2, ISO 9241-210:2019, etc.)

4

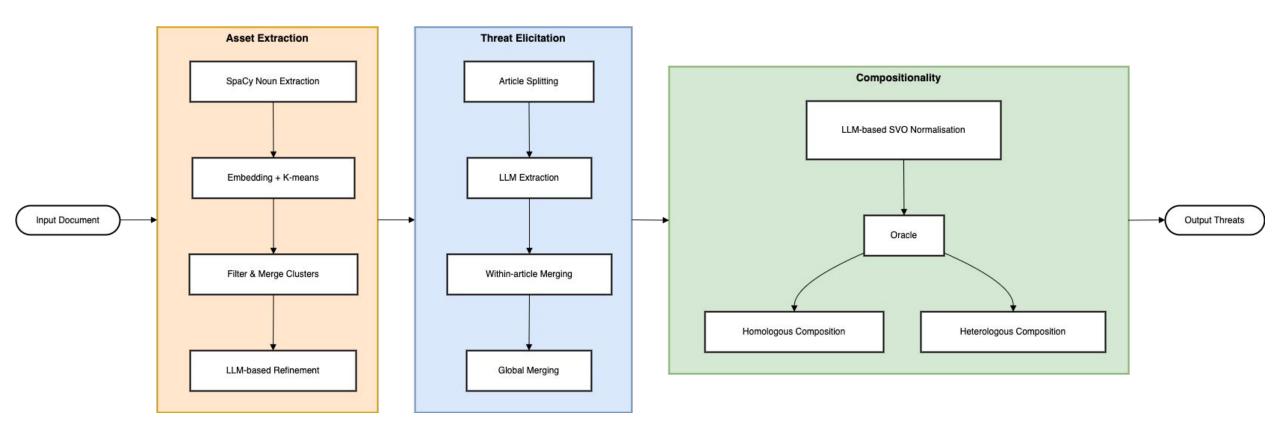
Need to cover cyber, privacy, AI, human factors

Outcome: A three-phase methodology

Agenda

- 1. Introduction
- 2. Methodology
- 3. Partial Validation
- 4. Conclusions

SERICS

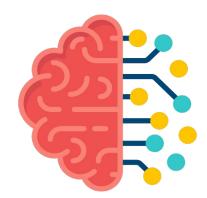


Methodology Overview

Agenda

- 1. Introduction
- 2. Methodology → <u>Asset Extraction</u>
- 3. Partial Validation
- 4. Conclusions

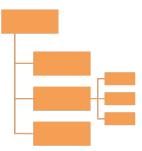
SERICS



Asset Extraction

Based on Natural Language Processing (NLP) and Clustering, with an LLM-based refinement

SpaCy Noun Extraction \rightarrow Word Embeddings \rightarrow K-means \rightarrow LLM Refinement

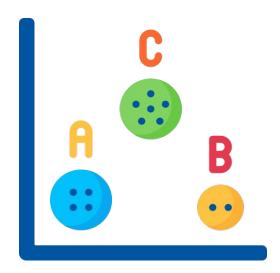


Asset Extraction - NLP

<u>SpaCy Noun Extraction</u> \rightarrow Word Embeddings \rightarrow K-means \rightarrow LLM Refinement

"Organizations shall ensure the integrity of personal data by implementing encryption and access controls."

["Organizations", "integrity", "personal data", "encryption", "access controls"]



Asset Extraction - Clustering

SpaCy Noun Extraction \rightarrow <u>Word Embeddings</u> \rightarrow <u>K-means</u> \rightarrow LLM Refinement

- Compute **embeddings** for each noun and run **K-means**
 - Human analyst chooses optimal k via silhouette score \rightarrow here k = 3

Cluster A: ["encryption", "access controls"] Cluster B: ["personal data", "integrity"] Cluster C: ["Organizations"]

Asset Extraction - Refinement

SpaCy Noun Extraction \rightarrow Word Embeddings \rightarrow K-means \rightarrow <u>LLM Refinement</u>

- **Set thresholds:** *st1* = 0.6 and *st2* = 0.8 for semantic similarity
- **Filter:** drop any noun whose *average similarity* to its cluster-mates < st1
- **Merge:** if two clusters' centroids cosine-sim > st2
- Select: LLM selects the assets (Prompt 1)

Assets cluster 1: ["access controls", "encryption"]

Assets cluster 2: ["personal data", "data integrity"] \rightarrow selected as "assets"

Agenda

- 1. Introduction
- 2. Methodology \rightarrow <u>Threat Elicitation</u>
- 3. Partial Validation
- 4. Conclusions

SERICS

Finanziato

Threat Elicitation

Article-Level Analysis:

- Split document into articles
- Human analyst choses N
- For each article, run LLM *N×* to extract asset–threat pairs (Prompt 2)

Ministero

dell'Università e dell<u>a Ricerca</u>

Consolidation:

- \clubsuit Within-article merging (Prompt 3) \rightarrow reduce redundancy
- \oplus Global merging (Prompt 4) \rightarrow unified threat list

Threat Elicitation - Before Merge

Article #	Extracted Threats
1	Unauthorised access due to missing authentication; Sensi- tive data exposed via public endpoints; Weak session man- agement allowing token reuse.
2	SQL injection risk in user profile update; Lack of input validation on form fields.
3	Error messages disclose stack traces; Verbose logs reveal internal paths.

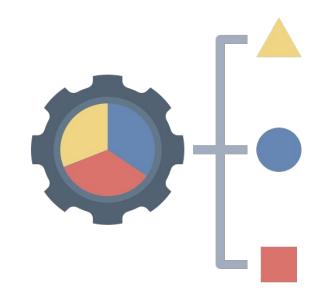
Threat Elicitation - After Merge

Article #	Consolidated Threat
1	Inadequate authentication and session controls lead to unauthorised access and potential data exposure.
2	Improper input handling exposes the system to injection attacks and unexpected behaviors.
3	Excessive error information leakage may aid attackers in understanding system internals.

Agenda

- 1. Introduction
- 2. Methodology \rightarrow <u>Compositionality</u>
- 3. Partial Validation
- 4. Conclusions

SERICS


Compositionality

<u>Goal:</u> Identify higher-order, cross-domain threat chains

Normalise each threat to **SVO** form \rightarrow *Oracle(s)*

Homologous case: semantic transitivity

Heterologous case: human-in-the-loop causal reasoning

"AI surveillance \rightarrow privacy infringement" + "Poor UX \rightarrow user stress"

Composed threat: Unregulated AI surveillance may indirectly cause user stress

Compositionality - Oracle(s)

An **Oracle** is responsible for the *threat composition*

Low-Human-Intervention Oracle (Fully Automated) Medium-Human-Intervention Oracle (Semi-Automated) High-Human-Intervention Oracle (Human-Driven)

Multiple oracles can be used to cross-validate each other's outputs

Compositionality - Homologous Case

- T₁: "Sessions enable unauthorised data access"
- T₂: "Weak session authentication allows session hijacking"

 $0.9 = \cos(emb(T_2), emb(T_1)) > \tau = 0.85$

Composed threat:

"Weak session authentication \rightarrow session hijacking \rightarrow unauthorised data access."

Compositionality - Heterologous Case

- Ta: "AI surveillance infringes on privacy rights"
- **T**_β: "Poor UX leads to user frustration and non-compliance"

Human adds bridge: "users learn to bypass monitoring to avoid discomfort"

Composed threat:

"Unregulated AI surveillance infringes on privacy rights, prompting users to bypass monitoring, which leads to frustration and non-compliance"

Agenda

- 1. Introduction
- 2. Methodology
- 3. Partial Validation
- 4. Conclusions

SERICS

Proposed Validation Plan

Expert questionnaire: Cybersec practitioners, AI ethicists, HCI experts

Dimensions: Applicability • Plausibility • Clarity • Relevance • Redundancy

Format: Closed & open questions on composed threats

Validation Questionnaire

1. Applicability – Does this threat apply to the domain "X" (e.g., financial services, public sector, healthcare)?

2. Plausibility – *Is the causal link between the two components of the threat logically sound?*

3. Clarity – Is the threat clearly formulated and understandable without additional context?

4. Relevance – Would you consider this threat relevant for inclusion in a cybersecurity risk assessment framework?

5. Redundancy – Does this threat overlap with any known threat categories or existing entries you are familiar with?

Agenda

- 1. Introduction
- 2. Methodology
- 3. Partial Validation
- 4. Conclusions

SERICS

Conclusions

We advance a **HAI-powered threat elicitation methodology** to deal with the **compositional nature** of *heterogenous infrastructures*

Future work:

- Consolidation of the results on AI, Cyber, Human Factor
- **D5** Prototype on Web of Things & Industry 4.0

Thanks for your attention!

For more information or questions:

<u>nas.inf@studium.unict.it</u>

